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There are various different 
possible outcomes, depending 
on , as recorded in the 
famous Mandelbrot set. 

c

This is closely  analogous to iterating .z ↦ z2 + c

Mumford’s problem 

Mumford’s maps are examples of Möbius maps, that 
is maps of the form  from 
the Riemann sphere  to itself. 

z ↦ (az + b)/(cz + d)
ℂ̂ = ℂ ∪ ∞

These are the most general conformal automorphisms of . ℂ̂

David Mumford
Fields Medal 1974
Wolf Prize 2008

Inspired by some of the first pictures of the Mandelbrot set, around 1979/80 
David Mumford suggested the following problem:

Let  be the group generated by two transformations  , 
.  Investigate for which values of  the group  is free and discrete.

Gc A : z ↦ c + 1/z, B ↦ z + 2
z ∈ ℂ ∪ ∞, c ∈ ℂ c Gc



We will investigate this problem in two ways:

using  hyperbolic geometry 
using Riemann surfaces and Teichmüller theory

The solution results from the interplay of the two approaches.

3D

For which values of  is the group  generated by  and 
 free and discrete?

c ∈ ℂ Gc Ac : z ↦ c + 1/z
B : z ↦ z + 2

Discrete means that the group  has no accumulation points in the set  of 
 matrices with determinant . (This is almost the same as saying that there are 

regions in  where  acts properly discontinuously.)

Gc SL(2,ℂ)
2 × 2 1

ℂ ∪ ∞ Gc

First we look at Möbius maps and limit sets of Kleinian groups in a bit 
more detail.

The problem

Free means there are no non-trivial relations.

A discrete group of Möbius maps  is called a Kleinian group.



Möbius maps

With this normalization, Möbius maps are classified 
dynamically (up to conjugacy) by their Trace .a + d

A Möbius map  

can be represented by a matrix  

normalized so that .

z ↦ (az + b)/(cz + d)

(a b
c d)

ad − bc = 1

Iterating a typical Möbius map
If the trace is real valued then 
the map doesn’t spiral. This 
will also matter to us later.

Parabolic transformations will 
become very important later.

A Möbius map typically has  
fixed points. Sometimes the fixed 
points come together: such maps 
are called parabolic. This happens 
only when the trace takes the 
value .

2

±2



Unlike Euclidean translations, Möbius maps typically do not commute. In fact they interact 
in very complicated ways. 

Möbius maps and limit sets are explored 
in detail in Indra’s Pearls. Japanese 
translation by Yohei Komori (Waseda Univ.)

Starting with any initial object, its images under a 
group of Möbius maps get smaller and smaller, piling 
up on a set called its limit set.

Groups and their limit sets

Orbits accumulating on the limit set.



Notice that   differs by only  
 while  is the same. So 

why is  discrete for 
one set of values and not for 
the other?

ta
0.005 tb

G(A, B)

Discreteness and Möbius maps
Indra’s Pearls describes an algorithm to plot limit sets.  It will fail if  the group in 
question is not discrete.  In this case orbits are dense in .ℂ̂

Herein lies the difficulty and 
s u b t l y o f M u m f o r d ’ s 
question.

In these pictures the algorithm plots all fixed points 
of all elements in the group  generated by 
two maps  and . This particular system depends on 
two parameters: Trace  and Trace .

G(A, B)
A B

ta = A tb = B

 ta = 1.91 − 0.05i, tb = 2
 ta = 1.905 − 0.05i, tb = 2

If the algorithm here 
was  allowed to run 
longer,  it would fill up 
the whole page.



Approaches to Mumford’s problem

There are two different ways of looking at Möbius maps:

As conformal automorphisms of the Riemann sphere .
As isometries of   hyperbolic space .

ℂ̂ = ℂ ∪ ∞
3D ℍ3

The corresponding approaches are:

Through Riemann surfaces and Teichmüller theory as established by 
Lars Ahlfors and Lipman Bers in the 1960s.

Through hyperbolic 3-manifolds using ideas introduced by  William 
Thurston in the 1970s-80s.

We’ll start with the hyperbolic -space approach.3

Recall the problem: for which values of  is the group  generated by 
 and  free and discrete?

c ∈ ℂ Gc
Ac : z ↦ c + 1/z B : z ↦ z + 2



T h i s g i v e s a n o t h e r 
perspective on discrete 
groups of  Möbius maps: we 
can use  geometry and 
topology.

3D
If a group of Möbius maps  is discrete and free, then 
the quotient  (made by identifying all points in 
one  orbit to a single point) is a hyperbolic -manifold, 
meaning that small neighbourhoods in  are 
isometric to small balls in .

ℍ3/G
G 3

ℍ3/G
ℍ3

Hyperbolic -space  can be modelled by the 
interior of a unit ball  with a suitable metric. 
Geodesics are circular arcs orthogonal to  
and planes are pieces of sphere likewise 
orthogonal. 

3 ℍ3

B
∂B

Approach via 3D hyperbolic geometry

Pi
ct

ur
e 

fro
m

 th
e 

G
eo

m
et

ry
 C

en
te

r, 
M

in
ne

so
ta

The action of a Möbius map on  extends 
(using inversions) to an action on the interior 
of the ball, that is, on .  This action is an 
isometry of .

ℂ̂

ℍ3

ℍ3

 is infinitely far, in terms of hyperbolic 
distance, from the centre, and is often referred 
to as . It can be identified with the Riemann 
sphere .  

∂B

∂ℍ3

ℂ̂



If  is both discrete and free, we deduce that 
 is the product . It is an infinite 

cylinder in which every horizontal section is a copy of 
. There is an additional pinch point on the bottom 

boundary, corresponding to the loop  being parabolic. 

Gc
M = ℍ3/Gc T* × ℝ

T*
B

The hyperbolic manifold  
associated to the group .
E l emen t s o f t h e g ro up 
correspond to curves in  If 
the element is parabolic then 
the curve is pinched to a point.

M
Gc

M .
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Mumford’s problem: The hyperbolic 
3-manifold

I f  i s t h e g ro u p g e n e r a t e d by t h e m ap s 
 then what is the hyperbolic

 -manifold  ?

Gc
A(z) = c + 1/z, B(z) = z + 2
3 M = ℍ3/Gc

Two commuting elements  and  would generate a torus 
. However  and don’t commute, in fact the 

commutator of  and  is parabolic.  This 
means that the corresponding loop has zero length. Thus 
the torus contains a puncture, or, in hyperbolic space, a 
cusp going out to infinity with a missing point at the end.  
Denote the punctured torus .

A B
T A B

ABA−1B−1 A B

T*



The `top’ and ‘bottom’ surfaces
The surfaces at the top and bottom of  are infinitely far from the ‘middle’ 
of .  They form its ‘boundary at infinity’.  To understand this properly we have to look 
at the action of  by Möbius maps on 

M = ℍ3/Gc
M

Gc ℂ̂ .

Suppose  is a discrete group of Möbius maps.  Then its action 
on  extends to an action on , which as we have seen 
typically had a limit set  where the orbits accumulate. The 
complement of   -- the white part in this figure -- is called 
the regular set, denoted . 

G
ℍ3 ℂ̂

Λ
Λ

Ω = Ω(G)

Limit set and regular set 
shown on the Riemann 
sphere. By David Wright.

Recall that the unit sphere boundary of the ball model of  is 
infinitely far in terms of hyperbolic distance from the centre, and 
can be identified with  

ℍ3

ℂ̂ .

In general  may have many connected components. Ahlfors finiteness theorem 
(1964) states that  is a finite union of Riemann surfaces of finite type.

Ω
Ω/G

Since  acts properly discontinuously on , it makes 
sense to identify all points in each  orbit to one point 
and form the quotient . Since , the space 

 inherits a complex structure from , equivalently 
the structure of a  Riemann surface.

G Ω
G

Ω/G Ω ⊂ ℂ
Ω/G ℂ
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What are these Riemann surfaces in our case? The  
‘top’ boundary of the hyperbolic manifold is the 
punctured torus  and the ‘bottom’ boundary 
is a sphere with  punctures .

M
T* = S1,1

3 S0,3

Mumford’s problem: The Riemann 
surfaces

In this picture of a limit set for a free discrete group , the regular set  consists of one 
simply connected component  and lots of round disks .   is  invariant and 

. The disks  are all mapped to one another   and . 

Gc Ω
Ω0 Dj Ω0 G

Ω0/G = T* Dj G D/G = S0,3



It is well known that  is a point, that is, 
there is a unique complex structure on .

𝒯(S0,3)
S0,3

By theory due to Bers,  is 

conformally the upper half plane  — 
the same as the space of all conformal 
structures on a flat torus. 

𝒯(S1,1)
ℍ

Teichmüller theory and the set of free discrete groups 𝒟

Mumford’s problem is set up in such a 
way that the entire region above  
is in , and so that  is between the 
horizontal lines  and .

ℑc = 2
𝒟 ∂𝒟

ℑc = 0 ℑc = 2
























































 






















Im c = 0

Im c = 2

Teichmüller theory is the study of deformations of Riemann surfaces. The space of all 
complex structures on a given topological surface   is called its Teichmüller space . S 𝒯(S)

Let  denote the set of all free discrete groups , so  . Mumford’s problem is 
to find . 

𝒟 Gc 𝒟 ⊂ ℂ
𝒟

We can determine the rough shape of  from the Teichmüller theory of 
the two ends of ,  that is, of the Riemann surfaces  and .

𝒟
M = ℍ/Gc S0,3 S1,1



The matrix coefficients of  and  depend on the parameter , 
hence  is a polynomial in . This gives a family of polynomial 
equations in  which can be solved to search for boundary points, for 
example at the  boundary point 

A B c ∈ ℂ
Tr W c

c
2/5 Tr W2/5 = Tr A2BA3B = ± 2.
























































 






















Im c = 0

Im c = 2

Locating : Cusp groups∂𝒟

Mumford and David Wright did a systematic search.  Warning: There are lots of  solutions 
for which  is parabolic but   is not discrete.  These are no good!W Gc

Bers also described a special type of group, called cusp 
groups, on . These are groups where an element in 

 which represents a simple curve on is 
parabolic. Suppose  corresponds to  a simple 
closed loop on the torus .  Bers showed that there are 
points on  for which  is parabolic.  

∂𝒟
G = π1(T*) T*

W ∈ G
T*

∂𝒟 W = Wc

The possible free homotopy classes of  loops on the torus, are 
enumerated by the rational numbers . The word  is a  
product of the two maps : 

p/q Wp/q
A, B W1/15 = A15B, W2/5 = A2BA3B .














































































The loop WMumford realised cusp groups might be found computationally.



This is what they found.

First results

The collection of plotted points appear to form a 
curve which one could well believe is a dense 

subset of . But is it? ∂𝒟

Plot in the -plane.c

Each plotted point corresponds to a cusp group at 
which the particular word  is parabolic.The 
corresponding limit set is made of a beautiful 
pattern of tangent circles. 

Wp/q

The highest point on the 
‘ bounda r y ’ i s whe re 

. S i n c e 
 this is the point 

.  

Tr A = − 2
Tr A = ic
2i

The limit set corresponding to  
at which  is parabolic. 

1/15
A15B



Some theorems
Such pictures inspired some nice results, in particular a famous paper by Curt 
McMullen.

Theorem (McMullen 1991)
Cusp groups are dense on the 
boundary.

Theorem (Keen, Maskit, S. 1993)
The limit set of each cusp group 
is indeed formed by a pattern of 
tangent circles. There is a unique 
pattern and a unique cusp group 
for each rational .p/q ∈ ℚ

This picture made later by David Wright shows a slightly different family in which 
. The picture is in the plane .  Limit sets for some special values 

of  are inserted. The coloured region indicates the free discrete groups. Notice how the 
limit sets of groups on or near the boundary contain lots of circles.

Tr A = c, Tr B = 3 Tr B = 3
Tr A



By David Wright, 1990

What are these rays and do they really 
behave as they seem to?

The rays
Going back to Mumford’s problem, in 1990, Linda Keen and I asked 
David Wright to plot the curve starting at the point  and 
continuing along the locus where  .  The results were 
astonishing.

Tr Wp/q = 2
Tr Wp/q > 2

Linda Keen, CUNY

There is one ray for each rational . 
The ray starts at the boundary point 
where  and follows the path 
along which  increases through 
real values to .

p/q

Tr Wp/q = 2
Tr Wp/q
∞

The  - ray is asymptotic to the line 
.

p/q
ℜc = 2p/q



The meaning of the rays: moving into 3D

To understand the rays, it turned out to 
be necessary to move into  and use 
some of Thurston’s ideas. The key is to 
look at  the hyperbolic convex hull  of 
the limit set. 

3D

𝒞

Join any two points in the limit 
set by a hyperbolic geodesic. 
The resulting -object is 
invariant under the group.

3D

Picture by Yair Minsky
The boundary  of  is made up of 
pieces of hyperbolic planes, glued together 
along bending lines which are themselves 
hyperbolic lines.

∂𝒞 𝒞

Thurston introduced the study of ‘surfaces’ like this, which he called pleated surfaces. 
They play a crucial role in many subsequent developments.



Interpretation in the limit set

Suppose  has a bending line which is the 
axis of a  isometry.  Then there is no 
twisting about its axis. This implies that the 
trace of the corresponding matrix is real 
valued. This was the key to the problem.

∂𝒞
3D

Considered as a  isometry, the axis of the 
Möbius map  is the 
hyperbolic line joining its two fixed points.

3D
z ↦ (az + b)/(cz + d)

Along a ray, a particular element   
has real trace and the axis of  and its 
conjugates form the bending lines.

W ∈ Gc
W

In this limit set there are lots of 
overlapping circles which make 
planes in .  The hyperbolic lines 
joining the points where the circles 
overlap form the bending lines.

∂𝒞

If the trace  is real valued there is no 
spiralling, so no twisting round the axis in 3D-
hyperbolic space.

a + d
A Möbius map with real trace.



Interpretation of the rays
Along a ray,  the axis of  and its conjugates form the bending lines of . These 
bending lines project to a collection of disjoint geodesics (closed or open) on . 
(Note that  can be identified as a pleated surface with its own hyperbolic 
structure.)

Wc ∂𝒞
T*c

T*c ⊂ ∂𝒞

Each ray starts at the cusp group on  where the curve corresponding to  has 
zero length. The length of  , and hence ,  increases monotonically from zero to 

.

∂𝒟 γp/q Wp/q
γp/q Tr Wp/q

∞

There is one ray for each possible closed geodesic on . No two rays can intersect 
because on  any two closed geodesics intersect, and this would mean two 
intersecting bending lines.

T*
T*

If the bending lines do not project to a simple closed curve, then they project to what is 
called a geodesic lamination on .  These interpolate the rationals in the obvious way.T*

There is one cusp group, and hence one ray,  for each , corresponding to the 
possible simple closed curves on .  At any point on the ray, there is no spiralling 
around the axis of  so  . 

p/q
T*

Wp/q Tr Wp/q ∈ ℝ

This key observation allowed us to prove all the properties of the rays seen in the pictures.



Some theorems
The Mumford-Wright picture of the boundary has led to many nice theorems. 
Our ray picture proves that the boundary is indeed located as claimed.

Theorem (Keen-S.1994) The function 
 has no singularities 

along its ray. It is asymptotic to the 
vertical line  .  The rays 
fi l l out  densely and are 
interpolated by irrational rays 
which also have a geometric 
meaning.

Tr Wp/q ∈ ℝ

ℜc = 2p/q
𝒟

Theorem (Minsky, 2001) 
Ending lamination theorem for . 

Each irrational ray ends in a 
unique point. In consequence 
the boundary  is a Jordan 
curve.

T*

∂𝒟

Picture by David Wright

Theorem (Many authors c.2000-05) 
Bers density theorem for . 

There are no discrete free 
groups  outside the region 
covered by the rays.

T*

Gc



In subsequent work over many years I have refined and extended these results to 
other one dimensional situations and also to surfaces of higher genus which involves 
parameter spaces of more complex dimensions and which are much more 
complicated.

I have worked on this topic with a number of other people including (in roughly 
chronological order)
Yohei Komori
Raquel Díaz
John Parker
Young Eun Choi
Sara Maloni
Ser Peow Tan
Yasushi Yamashita

Currently, inspired by Makoto Sakuma, I am looking at what happens along the 
extensions of the rays out side the parameter space — it seems probable that all 
discrete groups including knot groups are located along these rays.

Other families, more parameters

Hideki Miyachi also contributed to the study of the boundary.  Masaaki Wada has 
made beautiful pictures, as has Kentaro Ito. Ken’ichi Oshika has made many important 
contributions to the general theory of discrete groups.



Thank you

Credits: Unless otherwise noted, the pictures are made by Mumford and  Wright and most are in Indra’s Pearls.

Picture showing rays and extended rays in another one-parameter family called the Riley 
slice. The black dots represent discrete but non-free groups. Picture by Yasushi Yamashita.


