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I. The principle of locality revisited



Locality

The principle of locality states that an object is influenced directly
only by its immediate surroundings.

Thus, one can separate events located in different regions of
space-time and should be able to measure them independently.

Our aim
Propose a mathematical framework which encompasses the
main features of the locality principle in QFT;
use this framework to carry out renormalisation (evaluate
meromorphic germs at their poles) in accordance with the
locality principle.
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Causal separation

Light cone, past and future

In the Minkowski space (Rd , g), where g(x , y) = −x0y0 +
∑d−1

j=1 xjyj is
the Lorentzian scalar product, there is a notion of "past" and "future":

(picture downloaded from Wikipedia)

Two sets S1 and S2 are causally separated (S1‖S2) if and only if
Si does not lie in the future ofSj for i 6= j .
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Locality in axiomatic QFT

The Wightman field ϕ : S(Rd)→ O(H) obeys the locality axiom

Supp(f1)‖Supp(f2) =⇒ [ϕ(f1), ϕ(f2)] = 0. (1)

The (relative) scattering matrix Sf satisfies the locality condition

Supp(f1)‖Supp(f2) =⇒ Sf (f1 + f2) = Sf (f1)Sf (f2)

=⇒ [Sf (f1),Sf (f2)] = 0. (2)
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Mathematical interpretation

We introduce two binary relations

on sets:
O1>′O2 ⇔ [O1,O2] = 0, (3)

on test functions:

f1>f2 ⇔ Supp(f1)‖Supp(f2). (4)

Interpretation of (1) as a locality map (see later)

f1>f2 =⇒ ϕ(f1)>′ϕ(f2). (5)

Interpretation of (2) as a locality morphism (see later)

f1>f2 =⇒ Sf (f1 + f2) = Sf (f1) Sf (f2). (6)
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II. Locality as a symmetric binary relation
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Algebraic locality

Definition of locality
A locality set is a couple (X ,>) where X is a set and > ⊆ X × X is a
symmetric relation on X , called locality relation (or independence
relation) of the locality set.

x1>x2 ⇐⇒ (x1, x2) ∈ >, ∀x1, x2 ∈ X .

First examples of locality

X>Y ⇐⇒ X∩Y = ∅ on subsets X ,Y of a set Z .

X>Y ⇐⇒ X⊥Y on subsets X ,Y of an euclidean vector space V .

(almost-)Separation of supports

Let U ⊂ Rn be an open subset and ε ≥ 0. Two functions φ, ψ ∈ D(U)
are independent i.e., φ>ψ whenever d (Supp(φ), Supp(ψ)) >ε.

For ε = 0, this amounts to disjointness of supports, otherwise to
ε-separation of supports.
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Further examples

Probability theory: independence of events
Given a probability space P := (Ω,Σ,P) and two events A,B ∈ Σ:

A>B ⇐⇒ P(A∩B) = P(A)P(B).

Geometry: transversal manifolds
Given two submanifolds L1 and L2 of a manifold M:
L1> L2 ⇐⇒ L1 t L2 ⇐⇒ TxL1 +TxL2 = TxM ∀x ∈ L1 ∩ L2.

Number theory: coprime numbers
Given two positive integers m, n in N:

m> n⇐⇒ m∧ n = 1.
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Partial products

Locality set: (X ,>),

Polar set: U> := {x ∈ X , x > u ∀u ∈ U} for U ⊆ X ;

Graph of the locality relation: > = {(x1, x2) ∈ X 2, x1> x2};
Partial product: mX : X × X ⊃ > −→ X i.e. mX (>) ⊂ X .

(X ,mX ,>) locality semi-group

semi-group condition: ∀U ⊆ X , mX

(
(U> × U>) ∩ >

)
⊆ U>

or equivalently

(x1>u1 and x2>u2 ∀u1, u2 ∈ U) =⇒ (mX (x1, x2)>w ∀w ∈ U) .

Counterexample
Equip R with the locality relation x > y ⇐⇒ x + y 6∈Z.

(R,>,+) is NOT a locality semi-group: for U = {1/3} we have (1/3, 1/3) ∈ (U> × U>) ∩ > but

1/3+1/3 = 2/3/∈U>
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Locality category

Locality structures

set X  locality set (X ,>);

semi-group (X ,mX )  locality semi-group (X ,mX ,>, );

vector space (V ,+, ·)  locality vector space (V ,+, ·,>)
(U ⊂ V =⇒ U> vector space);

algebra (A,+, ·,mA)  locality algebra (A,+, ·,mA,>).

Locality morphisms: f : (X ,>X )→ (Y ,>Y )

locality map:
(f × f )(>X ) ⊂ >Y or equivalently x1>X x2 =⇒ f (x1)>Y f (x2);

locality semi-group morphism f : (X ,mX ,>X )→ (Y ,mY ,>Y ):
f is a locality map such that
x1>X x2 =⇒ f (mX (x1, x2)) = mY (f (x1), f (x2)).

· · · · · ·



Locality

III. Evaluating meromorphic germs at poles in QFT
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Functions of several variables in QFT

Speer’s analytic renormalisation [JMP 1967] revisited
Eugene Speer considers Feynman amplitudes given by the coefficients of
the perturbation-series expansion of the S matrix in a Lagrangian field
theory (with non zero mass).

Excerpt of Speer’s article
In this paper we apply a method of defining divergent quantities which
was originated by Riesz and has been used in various contexts by many
authors. [....] We find it necessary to consider functions of several
complex variables z1, · · · , zk , one associated with each line of the
Feynman graph. The main difficulty is the extension of the above
[Riesz’s] treatment of poles to the more complicated singularities which
occur in several complex variables...
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Brain teaser

(We assume the poles are at zero)
Speer shows [Theorem 1] that the divergent expressions lie in the filtered
algebraMFeyn(C∞) := ∪∞k=1MFeyn(Ck) consisting of Feynman
functions f : Ck → C,

f =
h(z1, · · · , zk)

L1
s1 · · · Lmsm

, Li =
∑
j∈Ji

zj , Ji ⊂ {1, · · · , k}, h holom. at zero

Questions:
1 How to evaluate f consistently at the poles z1 = · · · = zk = 0?
2 What freedom of choice do we have for the evaluator?

Evaluating a fraction with a linear pole at zero

f (z1, z2) =
z1 − z2
z1 + z2

|z1=0,z2=0 =


1 ?
0 ?

10000 ?
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Speer’s generalised evaluators

They consist of a family E = {Ek ,∈ N} of linear forms
Ek :MFeyn(Ck)→ C, compatible with the filtration, which fulfill the
following conditions

1 (extend ev0) E is the ordinary evaluation ev0 at zero on holom.
germs;

2 (partial multiplicativity) E(f1 · f2) = E(f1) · E(f2) if f1 and f2
depend on different sets (later called independent) of variables zi ;

3 E is invariant under permutations of the variables Ek ◦ σ∗ = Ek for
any σ ∈ Σk , with σ∗f (z1, · · · , zk) := f (zσ(1), · · · , zσ(k));

4 (continuity) If fn(~zk) · Ls11 · · · Lsmm
uniformly−→
n→∞

g(~zk) as holomorphic

germs, then Ek(fn) −→
n→∞

Ek( lim
n→∞

fn).

Drawback: Speer’s approach depends on the choice of coordinates
z1, · · · , zk , · · · .
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IV. Locality on meromorphic germs comes to the rescue
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Back to the locality principle in QFT

We considerM :=M(C∞) := ∪∞k=1M(Ck) consisting of meromorphic
functions/germs f : Ck → C with linear poles at zero,

f =
h(z1, · · · , zk)

L1
s1 · · · Lmsm

, Li linear in z1, · · · , zk , h holom. at zero

Aim: evaluate meromorphic germs at poles according to the principle of
locality: "two events separated in space can be measured independently"

Principle of locality: factorisation on independent events

a and b︸ ︷︷ ︸
∈A

independent =⇒
factorisation

Meas (a ∨ b)︸ ︷︷ ︸
concatenation

= Meas(a) · Meas(b).

We shall later equipM with a locality relation >;

Principle of locality revisited: locality evaluators

f > g =⇒ E(f · g) = E(f ) E(g) for two meromorphic germs f and g in an
appropriate subalgebraM• ofM.
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Locality on/independence of meromorphic
germs

Meromorphic germs with linear poles

M(Ck) 3 f = h(`1,··· ,`m)
L
s1
1 ···L

sn
n

, h holomorphic germ, si ∈ Z≥0,

`i : Ck → C, Lj : Ck → C linear forms with real coefficients (lie in L(Ck )).

Locality on meromorphic germs: orthogonality

Dependence set Dep(f ) := 〈`1, · · · , `m, L1, · · · , Ln〉.

Q inner product on Rk induces one on L(Ck)

f1⊥Q f2 ⇐⇒ Dep(f1)⊥QDep(f2).

polar germs: M•Q− (Ck) 3 f ⇐= h⊥Q Li for all i = 1, · · · , n.

Theorem: (L. Guo, S.-P., B. Zhang/ N. Berline, M. Vergne 2015)

M•(Ck) =M+(Ck)⊕QM•Q− (Ck)



Locality

Where we stand

Data(
M•,⊥Q

)
an (locality) algebra of meromorphic germs at zero

with a prescribed type of poles (e.g. Chen ⊂ Speer ⊂
Feynman);
M+ ⊂M• the algebra of holomorphic germs at zero;
the evaluation at zero: ev0 :M+ → C;
the Galois group GalQ (M•/M+) of (locality)
isomorphisms of

(
M•,⊥Q

)
;

M•Q− is generated by polar germs f = h
g with h⊥Q g .

Orthogonal projection

⊥Q induces a splitting

M• =M+⊕QM•Q− and π+
Q :M• −→M+

is the induced projection onto the holomorphic part.
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Theorem [Guo, S.P., Zhang 2022]

Definition
A locality evaluator at zero E :M• −→ C is a linear form which i)
extends the ordinary evaluation ev0 at zero and ii) factorises on
independent germs (or is a locality character):

f1⊥Q f2 =⇒ E(f1)⊥QE(f2).

Example: Minimal subtraction scheme:

EMS : M• π+
Q

−→M+
ev0−→ C is a locality evaluator.

Theorem
Given an inner product Q, a locality evaluator at zero E :M• −→ C is of
the form: E = ev0 ◦ π+Q︸ ︷︷ ︸

EMS

◦ T E︸︷︷︸
GalQ (M•/M+)

.
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THANK YOU FOR YOUR ATTENTION!
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